Kinetics and Mechanism of the Addition of Azide Ion to a Carbonyl Ligand of $[Ru_3(CO)_{12}]$: Cluster Activation

Leon A. P. Kane-Maguire,* Monika Manthey and Brett Robinson

Department of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2500, Australia

Spectroscopic studies of the reaction of azide ion with the cluster $[Ru_3(CO)_{12}]$ in acetone solvent confirmed the occurrence of process (i) under a CO atmosphere. Kinetic measurements of this rapid

$$[\operatorname{Ru}_{3}(\operatorname{CO})_{12}] + \operatorname{N}_{3}^{-} \longrightarrow [\operatorname{Ru}_{3}(\operatorname{NCO})(\operatorname{CO})_{11}]^{-} + \operatorname{N}_{2}$$
(i)

reaction revealed the rate law, Rate = $k[\text{Ru}][N_3^{-}]$, and the activation parameters $\Delta H^{\ddagger} = 61.6 \pm 3.4 \text{ kJ} \text{ mol}^{-1}$ and $\Delta S^{\ddagger} = 3.5 \pm 11.8 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$. These results are consistent with the addition of N_3^{-} to a CO ligand of $[\text{Ru}_3(\text{CO})_{12}]$ to form an intermediate under either steady-state or pre-equilibrium conditions, followed by a Curtius-type rearrangement (k_2) to give the isocyanato complex 1. In the absence of CO, the product 1 undergoes rapid loss of CO to give the bridged isocyanato complex $[\text{Ru}_3(\mu-\text{NCO})(\text{CO})_{10}]^-$. Kinetic studies of reaction (i) in tetrahydrofuran (thf) or thf–MeOH (1:1), in contrast, showed no dependence of rate on azide-ion concentration. This is inconsistent with a steady-state mechanism, but may be rationalised by a pre-equilibrium mechanism provided the condition $K_1[N_3^{-}] \ge 1$ is met, *i.e.* the pre-equilibrium constant K_1 is large under the kinetic conditions employed.

The use of anionic additives (X^{-}) , including halide, hydroxide, alkoxide and azide ions, to labilise normally inert metal carbonyl clusters such as $[Ru_3(CO)_{12}]$ to carbonyl substitution [equation (1)] has attracted considerable recent interest.¹⁻⁹

$$[\operatorname{Ru}_{3}(\operatorname{CO})_{12}] + L \xrightarrow{X^{-}} [\operatorname{Ru}_{3}(\operatorname{CO})_{11}L] + \operatorname{CO} \quad (1)$$

This labilisation is significant in several reactions catalysed by metal carbonyl clusters such as the water gas shift reaction and the facile hydrogenation of alkenes using the anionic isocyanato complexes $[M_3(NCO)(CO)_{10}]^-$ (M = Ru or Os).¹⁰ It has been suggested ^{3,7,10} that metal-carbonyl bond cleavage may be promoted by the formation of intermediate species of the type M-COX. Such species have been characterised spectroscopically for X⁻ = MeO⁻ in the reaction of $[M_3(CO)_{12}]$ (M = Ru or Os) with MeO⁻, and in the ruthenium case found to undergo subsequent rapid substitution of CO by tertiary phosphites.¹¹ Alternatively, activation has been ascribed ¹² to binding of the anion as an ancillary ligand in the cluster.

A particularly interesting process in this respect is the reaction of azide ion with $[Ru_3(CO)_{12}]$ in tetrahydrofuran (thf) solvent, which has been shown¹³ to give the isocyanato complex $[Ru_3(NCO)(CO)_{11}]^- 1$ in a rapid initial step [equation (2)]. Subsequent CO ligand dissociation led to the

$$[\operatorname{Ru}_{3}(\operatorname{CO})_{12}] + \operatorname{N}_{3}^{-} \longrightarrow [\operatorname{Ru}_{3}(\operatorname{NCO})(\operatorname{CO})_{11}]^{-} + \operatorname{N}_{2} \quad (2)$$

complex $[Ru_3(\mu-NCO)(CO)_{10}]^- 2$, followed by slow (days) conversion into the tetranuclear cluster $[Ru_4(NCO)(CO)_{13}]^- 3$. Related reactions have been previously reported ¹⁴ between azide ion and mononuclear metal carbonyls to give isocyanato complexes.

In order to throw light on the mechanism of carbonyl-ligand activation in these cluster reactions, we have carried out a detailed kinetic and spectroscopic study of reaction (2) in a range of solvents. The reaction was typically complete in less than 1 min under the conditions employed $\{[N_3^-]\}$

 $(1-30) \times 10^{-3} \text{ mol dm}^{-3}$, and under a CO atmosphere no further reaction was observed over several hours. The rate and activation parameters support rapid initial addition of azide to a CO ligand, followed by rate-determining loss of N₂ in a Curtius-type rearrangement to give the [Ru(NCO)(CO)₁₁]⁻ product.

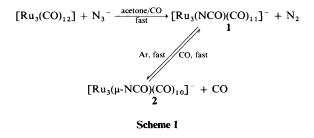
Experimental

The complex $[Ru_3(CO)_{12}]$ was obtained from Strem Chemicals and used as such, $[N(PPh_3)_2][N_3]$ from Aldrich. AnalaR acetone solvent was used, while thf and methanol were distilled from benzophenone and calcium hydride, respectively. Immediately prior to use, the solvents were deoxygenated by passing through a stream of either carbon monoxide or dinitrogen. Infrared spectra were recorded on a Biorad FTS-7 Fourier-transform spectrophotometer using a calcium fluoride liquid cell with a 0.5 mm path.

Kinetic Studies.—Reaction (2) was studied using a thermostatted (± 0.1 °C) stopped-flow spectrophotometer, by monitoring the large increase in absorbance at 370 nm. Each of the reactions was studied under pseudo-first-order conditions by employing a large excess of the N₃⁻ nucleophile {[Ru₃-(CO)₁₂] = (2.0–2.5) × 10⁻⁴ mol dm⁻³; [N₃⁻] = (1.0–30) × 10⁻³ mol dm⁻³}. In the majority of reactions the reagent solutions were saturated with CO prior to mixing, while in the remainder a dinitrogen atmosphere was employed.

Pseudo-first order rate constants, k_{obs} , were calculated from the slopes of plots of $\log (A_{\infty} - A_t) vs$. time using a least-squares program. These plots were generally linear for at least two halflives. Each k_{obs} quoted is the average from at least three separate runs, with an average reproducibility of $\pm 6\%$. Least-squares analyses of plots of $k_{obs} vs$. $[N_3^-]$ were used to obtain the second-order rate constants, k. The activation parameters for reaction (2) in acetone were calculated from a least-squares analysis of the Eyring equation using the second-order rate constants (k).

Results and Discussion


Nature of the Reactions.—Infrared spectroscopic studies of the reaction of $[N(PPh_3)_2][N_3]$ with $[Ru_3(CO)_{12}]$ in CO-saturated solvent $\{[Ru_3(CO)_{12}] = [N_3^-] = (0.5 \text{ or} 1.0) \times 10^{-3} \text{ mol } dm^{-3}\}$ confirm the rapid formation of the isocyanato complex $[Ru_3(NCO)(CO)_{11}]^-$ 1. A typical IR spectrum recorded after 1 min at room temperature showed v(CO) bands at 2100w, 2061m, 2028vs, 2014 (sh) and 1968m cm⁻¹, which are almost identical to those previously reported ¹³ for $[Ru_3(NCO)(CO)_{11}]^-$ in thf solvent (Table 1). No other v(CO) bands were noted, indicating a clean reaction as shown in equation (2). In addition, the medium-intensity, broad band at 2230 cm⁻¹ confirms the presence of the linear terminally bonded NCO ligand.

No further change occurred in the IR spectrum of this reaction mixture in CO-saturated acetone over another 30 min, confirming that the reaction monitored under the stopped-flow kinetic conditions $\{[Ru_3(CO)_{12}] = 2.5 \times 10^{-4} \text{ mol dm}^{-3}, [N_3^{-1}] = (2.5-30) \times 10^{-3} \text{ mol dm}^{-3}\}$ is indeed as in equation (2). However, if argon is bubbled through the above acetone solution of 1 for 5 min the IR spectrum changes rapidly to give bands at 2209ms (sharp), 2230w, 2060s, 2027s, 1996m, 1979m and 1920m cm⁻¹. These spectral changes indicate the partial conversion of 1 into the species $[Ru_3(\mu\text{-NCO})(CO)_{10}]^{-2}$ (see Table 1 for assignments). Particularly significant is the decrease in the broad terminal v(NCO) band of 1 at 2230 cm⁻¹, and the appearance of the sharp v(NCO) band at 2209 cm⁻¹ characteristic of the bridging μ -NCO ligand.

This latter conversion $1 \longrightarrow 2$, which involves loss of a CO ligand, can be readily reversed by bubbling CO gas through the reaction mixture for 5 min. The sharp v(NCO) band of complex 2 disappears together with its v(CO) bands at 1996, 1979 and 1920 cm⁻¹, and the original spectrum of $[Ru_3(NCO)(CO)_{11}]^- 1$ is quantitatively regenerated. These overall changes are summarised in Scheme 1.

Analogous IR spectroscopic studies of the reaction between $[N(PPh_3)_2][N_3]$ and $[Ru_3(CO)_{12}]$ in N₂-saturated acetone reveal a more complex situation, with v(NCO) and v(CO) bands associated with the previously reported ¹³ tetrameric cluster $[Ru_4(NCO)(CO)_{13}]^- 3$ appearing gradually over several hours [2189s, 2030s, 2007s and 1974m (br) cm⁻¹]. A similar, but slower, formation of $[Ru_4(NCO)(CO)_{13}]^-$ from the reaction between azide ion and $[Ru_3(CO)_{12}]$ has been previously described ¹³ in thf solvent in the absence of a CO atmosphere.

Kinetics and Mechanism.—Kinetic data for reaction (2) in CO-saturated acetone at various temperatures and azide-ion

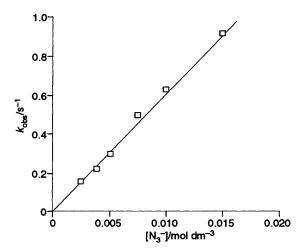
Table 1 Infrared spectra of cluster complexes

Complex

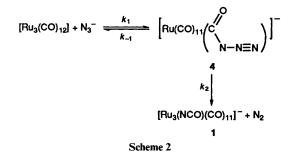
[Ru₃(NCO)(CO)₁
 [Ru₃(μ-NCO)(CO)
 [Ru₄(NCO)(CO)₁

concentrations are summarised in Table 2 and Fig. 1. These data conform to rate law (3) where $k_{obs} = k[N_3^-]$. This rate law

$$Rate = k_{obs}[Ru_3(CO)_{12}]$$
(3)


is also followed for the corresponding reaction in N₂-saturated acetone (Table 2). The similarity of the rate constants obtained at 24.9 °C under both CO and N₂ suggests that the subsequent transformations of the initial $[Ru_3(NCO)(CO)_{11}]^-$ product observed under N₂ do not interfere with the stopped-flow monitoring of reaction (2).

The observed rate law is consistent with the mechanism outlined in Scheme 2, involving initial addition of azide ion to the CO ligand of $[Ru_3(CO)_{12}]$ followed by a Curtius-type rearrangement of the intermediate 4. Assuming a steady-state concentration for intermediate 4, the general expression (4) is derived for this scheme. Provided that $k_2 \gg k_{-1}$, equation (4) reduces to (5), consistent with the


$$k_{\rm obs} = \frac{k_1 k_2 [N_3^-]}{k_{-1} + k_2} \tag{4}$$

$$k_{\rm obs} = k_1 [N_3^{-}] \tag{5}$$

observed rate law (3). In this case the calculated second-order rate constants, k, in Table 2 refer to the bimolecular addition (k_1) of N_3^- to a CO ligand. In contrast, if $k_{-1} \gg k_2$, equation (4)

Fig. 1 Dependence of k_{obs} on $[N_3^-]$ for the reaction of $[Ru_3(CO)_{12}]$ with $[N(PPh_3)_2][N_3]$ in CO-saturated acetone at 11.7 °C

	Solvent	$\tilde{v}(NCO)/cm^{-1}$	$\tilde{v}(CO)/cm^{-1}$	Ref.
11]-	Acetone	2230m (br)	2100w, 2061m, 2028vs, 2014 (sh), 1968m	This work
113	thf	2230m (br)	2098vw, 2060m, 2028vs, 2011s, 1963m	11
),₀]-	Acetone	2209ms	2060s, 2027s, 1996m, 1979m, 1920m	This work
	thf	2209s	2068m, 2025s, 1985s (br), 1910m	11
13]-	Acetone	2189s	2030s, 2007s, 1974m (br)	This work
153	thf	2189s	2061vw, 2028s, 2004vs, 1970m (br), 1945 (sh)	11

Table 2 Kinetic results for the reaction of $[Ru_3(CO)_{12}]$ with $[N(PPh_3)_2][N_3^-]$ in acetone; $[Ru] = 2.5 \times 10^{-4} \text{ mol dm}^{-3}$

<i>T</i> /°C	$10^{3}[N_{3}^{-}]/mol dm^{-3}$	$k_{ m obs}/ m s^{-1}$	$k */dm^3$ mol ⁻¹ s ⁻¹			
CO-Saturated solvent						
0.8	5.0	0.085				
4.8	5.0	0.092				
7.6	5.0	0.129				
8.3	5.0	0.142				
11.7	2.5	0.142				
11./	3.75	0.215				
	5.0	0.298				
	7.5	0.494	62.2 (1.9)			
	10.0	0.630				
	15.0	0.917				
18.2	5.0	0.357				
19.2	5.0	0.430				
22.5	5.0	0.640				
24.9	5.0	0.730				
26.9	5.0	0.824				
28.5	5.0	0.945				
		0.715				
N ₂ -Saturated solv	ent					
24.9	2.5	0.280				
	5.0	0.690				
	7.5	0.964				
	11.0	1.70	141 (9)			
	12.5	1.98	141 (3)			
	16.0	2.61				
	25.0	3.16				
	30.0	4.42				

* Values in brackets are the standard deviations derived from leastsquares analyses.

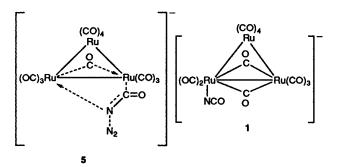
simplifies to (6), in which the calculated second-order rate

$$k_{\rm obs} = K_1 k_2 [N_3^{-}] \tag{6}$$

constants, k, equate to K_1k_2 , *i.e.* the product of the equilibrium constant (K_1) for formation of intermediate 4 and its unimolecular rearrangement (k_2) .

The transition state for the rearrangement process, $k_2(4 \rightarrow 1)$, cannot be unambiguously assigned, but may involve a structure such as 5. This involves partial cleavage of the Ru-C(O)N₃ bond and dissociative release of N₂, together with bond formation between the nascent NCO ligand and an adjacent ruthenium atom and concomitant movement of a CO ligand on this Ru atom to a bridging position. One further terminal-to-bridging CO rearrangement is needed to give the final product [Ru(NCO)(μ -CO)₂(CO)₉]⁻ 1, for which the structure shown has been previously proposed.¹³

The relatively low enthalpy of activation, ΔH^{\ddagger} , of 61.6 \pm 3.4 kJ mol⁻¹ calculated for reaction (2) in CO-saturated acetone is consistent with bimolecular nucleophilic addition at a CO ligand. However, the ΔS^{\ddagger} value of 3.5 \pm 11.8 J K⁻¹ mol⁻¹ is not as negative as might be expected for a simple bimolecular addition, k_1 . This may arise from a positive contribution from desolvation of the azide ion in achieving the transition state. Alternatively, it may be rationalised in terms of the limiting situation (6), where $k = K_1 k_2$, and the observed entropy of activation, ΔS^{\ddagger} , is given by equation (7); ΔS^{\ddagger} would be expected


$$\Delta S^{\ddagger} = \Delta S_1^{\diamond} + \Delta S_2^{\ddagger} \tag{7}$$

to include a significant positive contribution from ΔS_2^{\dagger} for the step k_2 if Ru–C and N–N bond cleavage in transition state 5 are more advanced than formation of the bond between Ru and the nascent NCO ligand. Interestingly, we have also recently obtained ¹⁵ a small positive ΔS^{\ddagger} value for the addition of azide

Table 3	Kinetic results for the reaction of $[Ru_3(CO)_{12}]$ with NaN ₃ in
	solvents; $[Ru] = 2.0 \times 10^{-4} \text{ mol dm}^{-3}$

Solvent	T/⁰C	10 ³ [N ₃ ⁻]/ mol dm ⁻³	$k_{ m obs}/{ m s}^{-1}$
thf"	25.2	1.02*	0.350
		3.00	0.259
		4.00	0.249
thf-MeOH	0.0	1.0	0.191
(1:1)		2.0	0.208
		10.0	0.183
		30.0	0.214
	25.0	5.0	2.03
MeOH	25.0	1.0	8.8
		2.0	10.1
		4.0	8.9
		6.0	10.8

^a Solvent CO-saturated. ^b [Ru] = $1.5 \times 10^{-4} \text{ mol dm}^{-3}$.

ion to a CO ligand of the complex $[Fe(\eta-C_5H_5)(CO)_3]^+$ in acetone-methanol (1:1) solvent.

An alternative mechanism involving the rapid pre-equilibrium formation of intermediate 4, followed by a slow rearrangement to product 1, would give rise to the general rate equation (8).

$$k_{\rm obs} = \frac{K_1 k_2 [N_3^-]}{1 + K_1 [N_3^-]} \tag{8}$$

Providing $K_1[N_3^-] \ll 1$ (*i.e.* $K_1 \ll 0.3 \text{ dm}^3 \text{ mol}^{-1}$) this again reduces to the observed form (3). However, if $K_1[N_3^-] \gg 1$ then $k_{obs} = k_2$, and no dependence of k_{obs} on $[N_3^-]$ is anticipated. This latter condition clearly does not hold for reaction (2) in acetone solvent.

In marked contrast to the above results in acetone, kinetic data summarised in Table 3 for reaction (2) in thf or thf-MeOH (1:1) as solvent reveal no dependence of k_{obs} on $[N_3^-]$. This cannot be explained by a steady-state mechanism, but is consistent with a pre-equilibrium mechanism where $K_1[N_3^-] \gg 1$, *i.e.* $K_1 > 10^3 \text{ dm}^3 \text{ mol}^{-1}$. The observed rate constants would consequently refer to the unimolecular rearrangement, k_2 . In earlier studies ¹¹ of the related addition of methoxide ion to $[Ru_3(CO)_{12}]$, a large equilibrium constant K_1 of ca. 5 \times 10³ dm³ mol⁻¹ was in fact observed for the formation of the relatively stable intermediate species $[Ru_3(CO)_{11}(CO_2 -$ Me)]⁻. Unfortunately, extension of our kinetic studies of reaction (2) to considerably lower $[N_3^-]$ values [where the general pre-equilibrium rate equation (8) might reduce to the form (6)] were hampered by the small absorbance changes observed using the lower $[Ru_3(CO)_{12}]$ concentrations required for pseudo-first-order conditions.

The results in Table 3 reveal a significant dependence of the rearrangement rate constant, k_2 , on the nature of the solvent (MeOH > thf-MeOH(1:1) > thf; 37:7:1). The order parallels the Gutmann acceptor numbers ¹⁶ for these solvents (MeOH 41.3, thf 8), and is the reverse of that expected on solvation grounds for the preceding azide addition step (k_1).

Finally, the rapid (< 5 min) room-temperature conversion of complex 1 into 2 observed here upon passing a stream of argon through an acetone solution of $[Ru_3(NCO)(CO)_{11}]^- 1$ confirms the marked activation of the ruthenium cluster towards CO ligand loss achieved *via* initial addition of N₃⁻. The initial activation step in equation (2) has a low enthalpy of activation ($\Delta H^{\ddagger} = 61.6 \text{ kJ mol}^{-1}$), which contrasts with the high activation energies and temperatures generally required ^{17,18} for CO substitution with unactivated [Ru₃(CO)₁₂].

Detailed kinetic studies of the subsequent facile CO substitution reactions of the anion $[Ru_3(NCO)(CO)_{11}]^-$ {e.g. $1 \longrightarrow [Ru_3(\mu\text{-NCO})(CO)_{10}]^-$ } are planned in order to provide further light on the activation process. Recent kinetic studies by Shen and Basolo⁹ on the substitution reactions of the related osmium complexes $[Os_3X(CO)_{11}]^-$ (X⁻ = Cl⁻, Br⁻, I⁻ or NCO⁻) suggest that CO labilisation is achieved by the formation of reactive μ -X intermediates rather than *via cis* labilisation by the anions X⁻.

Acknowledgements

The Australian Research Council is thanked for financial support.

References

- 1 B. D. Dombek, Organometallics, 1985, 4, 1707.
- 2 S.-H. Han, G. L. Geoffroy, B. D. Dombek and L. L. Rheingold, Inorg. Chem., 1988, 27, 4355.

- 3 G. Lavigne and H. D. Kaesz, J. Am. Chem. Soc., 1984, 106, 4647.
- 4 M. Anstock, D. Taube, D. C. Gross and P. C. Ford, J. Am. Chem. Soc., 1984, 106, 3696.
- 5 D. J. Darensbourg, R. L. Gray and M. Pala, *Organometallics*, 1984, 3, 1928 and refs. therein.
- 6 T. Chin-Choy, W. T. Harrison, G. D. Stucky, N. Keder and P. C. Ford, *Inorg. Chem.*, 1989, **28**, 2029 and refs. therein.
- 7 P. C. Ford and A. Rokicki, Adv. Organomet. Chem., 1988, 28, 139 and refs. therein.
- 8 W. L. Gladfelter and K. J. Roesselet, in *The Chemistry of Metal Cluster Complexes*, eds. D. F. Schriver, H. D. Kaesz and R. D. Adams, VCH, New York, 1990, ch. 7, p. 329.
- 9 J.-K. Shen and F. Basolo, Organometallics, 1993, 12, 2946.
- 10 J. L. Zuffa and W. L. Gladfelter, J. Am. Chem. Soc., 1986, 108, 4669 and refs. therein.
- 11 D. C. Gross and P. C. Ford, J. Am. Chem. Soc., 1985, 107, 585 and refs. therein.
- 12 N. Lugan, F. Laurent, G. Lavigne, T. P. Newcomb, E. W. Lümatin and J. J. Bonnett, Organometallics, 1992, 11, 1351.
- 13 D. E. Fjare, J. E. Jensen and W. L. Gladfelter, *Inorg. Chem.*, 1983, 22, 1774.
- 14 H. Werner, W. Beck and H. Englemann, *Inorg. Chim. Acta*, 1969, 3, 331 and refs. therein; R. J. Angelici and G. C. Faber, *Inorg. Chem.*, 1971, 10, 514 and refs. therein.
- 15 M. Manthey and L. A. P. Kane-Maguire, unpublished work.
- 16 V. Gutmann, Coord. Chem. Rev., 1976, 18, 225.
- 17 A. Poë and M. V. Twigg, J. Chem. Soc., Dalton Trans., 1974, 1860.
- 18 T. Chin-Choy, W. T. A. Harrison, G. D. Stucky, N. Keder and P. C. Ford, *Inorg. Chem.*, 1989, 28, 2028.

Received 31st August 1994; Paper 4/05296J